Chargement Évènements

« Tous les Évènements

  • Cet évènement est passé

Séminaire IMAGE : Louis Filstroff (ENSAI), « Multi-Fidelity Bayesian Optimization with Unreliable Information Sources »

30 mars 2023 / 14:00 - 16:00

Nous aurons le plaisir d’accueillir Louis Filstroff,  ATER à l’ENSAI (Ecole Nationale de la Statistique et de l’Analyse de l’Information de Rennes), qui donnera un séminaire IMAGE, le jeudi 30 mars 2023 à 14h00 en salle F-200.

Titre:

Multi-Fidelity Bayesian Optimization with Unreliable Information Sources

Résumé:

Bayesian optimization (BO) is a powerful framework for optimizing black-box, expensive-to-evaluate functions. Over the past decade, many algorithms have been proposed to integrate cheaper, lower-fidelity approximations of the objective function into the optimization process, with the goal of converging towards the global optimum at a reduced cost. This task is generally referred to as multi-fidelity Bayesian optimization (MFBO). However, MFBO algorithms can lead to higher optimization costs than their vanilla BO counterparts, especially when the low-fidelity sources are poor approximations of the objective function, therefore defeating their purpose. To address this issue, we propose rMFBO (robust MFBO), a methodology to make any GP-based MFBO scheme robust to the addition of unreliable information sources. rMFBO comes with a theoretical guarantee that its performance can be bound to its vanilla BO analog, with high controllable probability. We demonstrate the effectiveness of the proposed methodology on a number of numerical benchmarks, outperforming earlier MFBO methods on unreliable sources. We expect rMFBO to be particularly useful to reliably include human experts with varying knowledge within BO processes.

Détails

Date :
30 mars 2023
Heure :
14:00 - 16:00
Catégories d’évènement:
,

Organisateur

Image

Lieu

ENSICAEN – Batiment F – Salle F-200
6 Bd Maréchal Juin
Caen, 14050 France
+ Google Map
View Lieu Website